• Full list of publications available from PubMed here

  • Publications available on bioRxiv here

Selected publications

Review

  • Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders.
    Mol Cell Neurosci Kilinc, M. et al.

Basic Research

  • SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits.
    Nat Neurosci Michaelson, S. D. et al.

  • Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior.
    Elife Creson, T. K. et al.

  • Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses.
    Cell Clement, J. P. et al.

Assay Development

  • An interactive framework for whole-brain maps at cellular resolution.
    Nat Neurosci Furth, D. et al.

  • A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons.
    Sci Rep Sridharan, B. et al.



Publications by date:

2020

Aten S, Kalidindi A, Yoon H, Rumbaugh G, Hoyt KR, Obrietan K. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and light-entrainment capacity. doi: 10.1111/ejn.15043. Eur J Neurosci. (2020)

Llamosas N, Arora V, Vij R, Kilinc M, Bijoch L, Rojas C, Reich A, Sridharan B, Willems E, Piper DR, Scampavia L, Spicer TP, Miller CA, Holder JL, Rumbaugh G. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. doi:10.1523/JNEUROSCI.1367-20.2020 J Neurosci (2020)

Chen JL, et al. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. doi: 10.1021/jacs.0c00768. J Am Chem Soc (2020)

Gou G., et al. SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain. doi: 10.1111/jnc.14988. J Neurochem (2020)

Young EJ, Lin H, Kamenecka TM, Rumbaugh G, Miller CA. Methamphetamine Learning Induces Persistent and Selective Nonmuscle Myosin II-Dependent Spine Motility in the Basolateral Amygdala. doi: 10.1523/JNEUROSCI.2182-19.2020. J Neurosci (2020)

Gripp KW., The sixth international RASopathies symposium: Precision medicine-From promise to practice. doi: 10.1002/ajmg.a.61434. Am J Med Genet (2020)

2019

Gripp KW. et al. The sixth international RASopathies symposium: Precision medicine-From promise to practice. 10.1002/ajmg.a.61434 Am J Med Genet A. (2019)

Jones, M. E., Sillivan, S. E., Jamieson, S., Rumbaugh, G. & Miller, C. A. microRNA mir-598-3p mediates susceptibility to stress enhancement of remote fear memory. doi: 10.1101/lm.048827.118 Learn Mem. (2019)

Sridharan, B. et al. A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons. Sci Rep 9, 9000, doi:10.1038/s41598-019-45265-1 (2019).

Sillivan, S. E., Jones, M. E., Jamieson, S., Rumbaugh, G. & Miller, C. A. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 14, e0209846, doi:10.1371/journal.pone.0209846 (2019).

Sillivan, S. E. et al. MicroRNA regulation of persistent stress-enhanced memory. Mol Psychiatry, doi:10.1038/s41380-019-0432-2 (2019).

Sillivan, S. E. et al. Correction: MicroRNA regulation of persistent stress-enhanced memory. Mol Psychiatry, doi:10.1038/s41380-019-0452-y (2019).

Radnai, L., Stremel, R. F., Sellers, J. R., Rumbaugh, G. & Miller, C. A. A Semi-High-Throughput Adaptation of the NADH-Coupled ATPase Assay for Screening Small Molecule Inhibitors. J Vis Exp, doi:10.3791/60017 (2019).

Jones, M. E., Sillivan, S. E., Jamieson, S., Rumbaugh, G. & Miller, C. A. microRNA mir-598-3p mediates susceptibility to stress enhancement of remote fear memory. Learn Mem 26, 363-372, doi:10.1101/lm.048827.118 (2019).

Gripp, K. W. et al. The sixth international RASopathies symposium: Precision medicine-From promise to practice. Am J Med Genet A, doi:10.1002/ajmg.a.61434 (2019).

Creson, T. K. et al. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. Elife 8, doi:10.7554/eLife.46752 (2019).

Blouin, A. M. et al. Social stress-potentiated methamphetamine seeking. Addict Biol 24, 958-968, doi:10.1111/adb.12666 (2019).

2018

Weldon, M., Kilinc, M., Lloyd Holder, J., Jr. & Rumbaugh, G. The first international conference on SYNGAP1-related brain disorders: a stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord 10, 6, doi:10.1186/s11689-018-9225-1 (2018).

Wang, W. et al. Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cereb Cortex 28, 2253-2266, doi:10.1093/cercor/bhx126 (2018).

Spicer, T. P. et al. Improved Scalability of Neuron-Based Phenotypic Screening Assays for Therapeutic Discovery in Neuropsychiatric Disorders. Mol Neuropsychiatry 3, 141-150, doi:10.1159/000481731 (2018).

Michaelson, S. D. et al. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat Neurosci 21, 1-13, doi:10.1038/s41593-018-0268-0 (2018).

Kilinc, M. et al. Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Mol Cell Neurosci 91, 140-150, doi:10.1016/j.mcn.2018.03.008 (2018).

Furth, D. et al. An interactive framework for whole-brain maps at cellular resolution. Nat Neurosci 21, 139-149, doi:10.1038/s41593-017-0027-7 (2018).

Briggs, S. B., Hafenbreidel, M., Young, E. J., Rumbaugh, G. & Miller, C. A. The role of nonmuscle myosin II in polydrug memories and memory reconsolidation. Learn Mem 25, 391-398, doi:10.1101/lm.046763.117 (2018).

2017

Young, E. J., Briggs, S. B., Rumbaugh, G. & Miller, C. A. Nonmuscle myosin II inhibition disrupts methamphetamine-associated memory in females and adolescents. Neurobiol Learn Mem 139, 109-116, doi:10.1016/j.nlm.2017.01.001 (2017).

Sillivan, S. E. et al. Susceptibility and Resilience to Posttraumatic Stress Disorder-like Behaviors in Inbred Mice. Biol Psychiatry 82, 924-933, doi:10.1016/j.biopsych.2017.06.030 (2017).

Briggs, S. B., Blouin, A. M., Young, E. J., Rumbaugh, G. & Miller, C. A. Memory disrupting effects of nonmuscle myosin II inhibition depend on the class of abused drug and brain region. Learn Mem 24, 70-75, doi:10.1101/lm.043976.116 (2017).

2016

Young, E. J. et al. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry 21, 615-623, doi:10.1038/mp.2015.103 (2016).

Ogden, K. K., Ozkan, E. D. & Rumbaugh, G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 100, 2-16, doi:10.1016/j.neuropharm.2015.07.029 (2016).

2015

Zhou, M. et al. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment. Brain 138, 992-1008, doi:10.1093/brain/awv002 (2015).

Rumbaugh, G. et al. Pharmacological Selectivity Within Class I Histone Deacetylases Predicts Effects on Synaptic Function and Memory Rescue. Neuropsychopharmacology 40, 2307-2316, doi:10.1038/npp.2015.93 (2015).

Ozkan, E. D. et al. Input-specific regulation of hippocampal circuit maturation by non-muscle myosin IIB. J Neurochem 134, 429-444, doi:10.1111/jnc.13146 (2015).

Aceti, M. et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 77, 805-815, doi:10.1016/j.biopsych.2014.08.001 (2015).

2014

Young, E. J. et al. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 75, 96-104, doi:10.1016/j.biopsych.2013.07.036 (2014).

Ozkan, E. D. et al. Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82, 1317-1333, doi:10.1016/j.neuron.2014.05.015 (2014).

Aguilar-Valles, A. et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry 76, 57-65, doi:10.1016/j.biopsych.2013.09.014 (2014).

2013

Lynch, G., Kramar, E. A., Babayan, A. H., Rumbaugh, G. & Gall, C. M. Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64, 27-36, doi:10.1016/j.neuropharm.2012.07.006 (2013).

Griggs, E. M., Young, E. J., Rumbaugh, G. & Miller, C. A. MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33, 1734-1740, doi:10.1523/jneurosci.2873-12.2013 (2013).

Clement, J. P., Ozkan, E. D., Aceti, M., Miller, C. A. & Rumbaugh, G. SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity. J Neurosci 33, 10447-10452, doi:10.1523/jneurosci.0765-13.2013 (2013).

Almonte, A. G. et al. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 124, 109-122, doi:10.1111/jnc.12075 (2013).

2012

Kramar, E. A. et al. Synaptic evidence for the efficacy of spaced learning. Proc Natl Acad Sci U S A 109, 5121-5126, doi:10.1073/pnas.1120700109 (2012).

Gavin, C. F., Rubio, M. D., Young, E., Miller, C. & Rumbaugh, G. Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn Mem 19, 9-14, doi:10.1101/lm.024042.111 (2012).

Clement, J. P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709-723, doi:10.1016/j.cell.2012.08.045 (2012).

2011

Rumbaugh, G. & Miller, C. A. Epigenetic changes in the brain: measuring global histone modifications. Methods Mol Biol 670, 263-274, doi:10.1007/978-1-60761-744-0_18 (2011).

Rubio, M. D., Johnson, R., Miller, C. A., Huganir, R. L. & Rumbaugh, G. Regulation of synapse structure and function by distinct myosin II motors. J Neurosci 31, 1448-1460, doi:10.1523/jneurosci.3294-10.2011 (2011).

2010

Rex, C. S. et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603-617, doi:10.1016/j.neuron.2010.07.016 (2010).

Miller, C. A. et al. Cortical DNA methylation maintains remote memory. Nat Neurosci 13, 664-666, doi:10.1038/nn.2560 (2010).

Kilgore, M. et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35, 870-880, doi:10.1038/npp.2009.197 (2010).

2009

Guo, X. et al. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 34, 1659-1672, doi:10.1038/npp.2008.223 (2009).

Funk, A. J., Rumbaugh, G., Harotunian, V., McCullumsmith, R. E. & Meador-Woodruff, J. H. Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport 20, 1019-1022, doi:10.1097/WNR.0b013e32832d30d9 (2009).

2008

Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201-205, doi:10.1126/science.1152089 (2008).

2007

Wu, Y. et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc Natl Acad Sci U S A 104, 18163-18168, doi:10.1073/pnas.0708699104 (2007).

Sia, G. M. et al. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron 55, 87-102, doi:10.1016/j.neuron.2007.06.020 (2007).

2006

Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475-484, doi:10.1016/j.neuron.2006.08.034 (2006).

Rumbaugh, G., Adams, J. P., Kim, J. H. & Huganir, R. L. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc Natl Acad Sci U S A 103, 4344-4351, doi:10.1073/pnas.0600084103 (2006).

2005

Thomas, G. M., Rumbaugh, G. R., Harrar, D. B. & Huganir, R. L. Ribosomal S6 kinase 2 interacts with and phosphorylates PDZ domain-containing proteins and regulates AMPA receptor transmission. Proc Natl Acad Sci U S A 102, 15006-15011, doi:10.1073/pnas.0507476102 (2005).

Rumbaugh, G. Synapses fight over glutamate receptor 1. J Neurosci 25, 8347-8348, doi:10.1523/jneurosci.3209-05.2005 (2005).

Hayashi, T., Rumbaugh, G. & Huganir, R. L. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 47, 709-723, doi:10.1016/j.neuron.2005.06.035 (2005).

2004

Landree, L. E. et al. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem 279, 3817-3827, doi:10.1074/jbc.M310991200 (2004).

2003

Tao, Y. X. et al. Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 23, 6703-6712 (2003).

Rumbaugh, G., Sia, G. M., Garner, C. C. & Huganir, R. L. Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons. J Neurosci 23, 4567-4576 (2003).

Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-643, doi:10.1016/s0092-8674(03)00122-3 (2003).

2001

Ceccon, M., Rumbaugh, G. & Vicini, S. Distinct effect of pregnenolone sulfate on NMDA receptor subtypes. Neuropharmacology 40, 491-500, doi:10.1016/s0028-3908(00)00197-0 (2001).

2000

Vicini, S. & Rumbaugh, G. A slow NMDA channel: in search of a role. J Physiol 525 Pt 2, 283, doi:10.1111/j.0021-3751.2000.00283.x (2000).

Rumbaugh, G., Prybylowski, K., Wang, J. F. & Vicini, S. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83, 1300-1306, doi:10.1152/jn.2000.83.3.1300 (2000).

Prybylowski, K., Rumbaugh, G., Wolfe, B. B. & Vicini, S. Increased exon 5 expression alters extrasynaptic NMDA receptors in cerebellar neurons. J Neurochem 75, 1140-1146, doi:10.1046/j.1471-4159.2000.0751140.x (2000).

1999

Rumbaugh, G. & Vicini, S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19, 10603-10610 (1999).